25637-16-5, 4-Bromotetrahydropyran is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated
A dry 50 mL flask under nitrogen was charged with magnesium (197 mg, 8.11 mmol) and a crystal of iodine. The solids were stirred vigorously while being warmed with the heat gun to aerosolize the iodine. Upon cooling to room temperature, it was treated with THF (4 mL). The mixture was warmed with a heat gun and treated with a solution of 4-bromotetrahydro-2H-pyran (0.678 mL, 6.08 mmol) in THF (4 mL) dropwise via a dry addition funnel. When addition was complete, the mixture was placed in a preheated oil bath, and the mixture held at reflux for 30 min. After cooling to room temperature, the solution was transferred to a stirred solution of N,2-dimethoxy-N-methylacetamide (270 mg, 2.03 mmol) in THF (12 mL) at -78 C. After stirring for 5 min, the ice bath was removed and the reaction allowed to warm to room temperature. The reaction was placed in a 0 C. bath, quenched by addition of sat. aq. ammonium chloride, concentrated, diluted with EtOAc, washed with water, then brine, dried over magnesium sulfate, filtered, and concentrated to give 260 mg (81%) as clear oil. Material was used without purification. 1H NMR (400 MHz, CDCl3) delta 4.11 (s, 2H), 4.05-4.0 (m, 2H), 3.5-3.44 (m, 2H), 3.45 (s, 3H), 2.8 (m, 1H), 1.64 (m, 2H), 1.32 (m, 2H)., 25637-16-5
25637-16-5 4-Bromotetrahydropyran 13349654, aTetrahydropyrans compound, is more and more widely used in various.
Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; Norris, Derek J.; Delucca, George V.; Gavai, Ashvinikumar V.; Quesnelle, Claude A.; Gill, Patrice; O’Malley, Daniel; Vaccaro, Wayne; Lee, Francis Y.; DeBenedetto, Mikkel V.; Degnan, Andrew P.; Fang, Haiquan; Hill, Matthew D.; Huang, Hong; Schmitz, William D.; Starrett, JR., John E.; Han, Wen-Ching; Tokarski, John S.; Mandal, Sunil Kumar; (220 pag.)US2016/176864; (2016); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics