With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1768-64-5,4-Chlorotetrahydropyran,as a common compound, the synthetic route is as follows.
Intermediate 18A (4-Amino-5-bromopyrrolo[2,l-fj[l ,2,4]triazin-7-yl)(tetrahydro-2/ -pyran-4-yl)methanol In a 50 l. three-necked flask equipped with a condenser, a thermometer and a dropping funnel, which was purged with argon, a Gri uard reagent was prepared from magnesium turnings (484 mg, 19.9 mmol) and 4-chlorotetrahydropyrane (2.4 g, 19.9 mmol) in dry THF (14 mL). To this solution was added at 0C a suspension of Intermediate 16A (1.2 g, 3.98 mmol) in THF (20 mL), and the reaction mixture was allowed to stir for 1 h at room temperature. It was then quenched with saturated aqueous ammonium chloride solution and extracted with ethyl acetate (2 x 50 mL). The organic layer was washed with brine, dried over magnesium sulfate and concentrated. The residue was purified by preparative HPLC (method 3). Yield: 0.5 g (38% of th.). LC-MS (method 6): R, = 0.66 min; MS (ESIpos): m/z (%) = 327.0 (100) [M+H]+, MS (ESIneg): m/z (%) = 325.1 (100) [M-H]~
1768-64-5, 1768-64-5 4-Chlorotetrahydropyran 137202, aTetrahydropyrans compound, is more and more widely used in various fields.
Reference£º
Patent; BAYER INTELLECTUAL PROPERTY GMBH; Bayer Pharma Aktiengesellschaft; KLAR, Juergen; VOEHRINGER, Verena; TELSER, Joachim; LOBELL, Mario; SUessMEIER, Frank; LI, Volkhart Min-Jian; BOeTTGER, Michael; GOLZ, Stefan; LANG, Dieter; SCHLEMMER, Karl-Heinz; SCHLANGE, Thomas; SCHALL, Andreas; FU, Wenlang; WO2013/4551; (2013); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics