New learning discoveries about 1768-64-5

1768-64-5, 1768-64-5 4-Chlorotetrahydropyran 137202, aTetrahydropyrans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1768-64-5,4-Chlorotetrahydropyran,as a common compound, the synthetic route is as follows.

Intermediate 18A (4-Amino-5-bromopyrrolo[2,l-fj[l ,2,4]triazin-7-yl)(tetrahydro-2/ -pyran-4-yl)methanol In a 50 l. three-necked flask equipped with a condenser, a thermometer and a dropping funnel, which was purged with argon, a Gri uard reagent was prepared from magnesium turnings (484 mg, 19.9 mmol) and 4-chlorotetrahydropyrane (2.4 g, 19.9 mmol) in dry THF (14 mL). To this solution was added at 0C a suspension of Intermediate 16A (1.2 g, 3.98 mmol) in THF (20 mL), and the reaction mixture was allowed to stir for 1 h at room temperature. It was then quenched with saturated aqueous ammonium chloride solution and extracted with ethyl acetate (2 x 50 mL). The organic layer was washed with brine, dried over magnesium sulfate and concentrated. The residue was purified by preparative HPLC (method 3). Yield: 0.5 g (38% of th.). LC-MS (method 6): R, = 0.66 min; MS (ESIpos): m/z (%) = 327.0 (100) [M+H]+, MS (ESIneg): m/z (%) = 325.1 (100) [M-H]~

1768-64-5, 1768-64-5 4-Chlorotetrahydropyran 137202, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; BAYER INTELLECTUAL PROPERTY GMBH; Bayer Pharma Aktiengesellschaft; KLAR, Juergen; VOEHRINGER, Verena; TELSER, Joachim; LOBELL, Mario; SUessMEIER, Frank; LI, Volkhart Min-Jian; BOeTTGER, Michael; GOLZ, Stefan; LANG, Dieter; SCHLEMMER, Karl-Heinz; SCHLANGE, Thomas; SCHALL, Andreas; FU, Wenlang; WO2013/4551; (2013); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics