With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.108-55-4,Dihydro-2H-pyran-2,6(3H)-dione,as a common compound, the synthetic route is as follows.
To a suspension of aluminum chloride (205.85 g, 1.54 mol) in dichloromethane (500 mL) was added a solution of glutaric anhydride (80 g, 0.7 mol) in dichloromethane (125 mL) at 0 C. The reaction mixture was stirred for 30 minutes. Fluorobenzene (67.36 g, 0.7 mol) was then added slowly. The progress of the reaction was monitored by TLC. Upon completion, the reaction mixture was poured into ice water (2000 mL) to precipitate a crude solid product, which was collected by filtration. The crude was re-dissolved in a 3% aqueous sodium hydroxide solution (1100 mL). After being washed with dichloromethane (300 mL), the aqueous solution was acidified to obtain a solid product. The product was filtered, washed with water, and vacuum dried to yield compound 3 (125 g). H NMR of compound 3 (CDCl3, 300M Hz): delta=2.10 (q, J=7.2 Hz, 2H), 2.51 (t, J=7.2 Hz, 2H), 3.65 (t, J=7.2 Hz, 2H), 7.13 (t, J=7.4 Hz, 2H), 7.98 (q, J=5.4 Hz, 2H)
108-55-4, 108-55-4 Dihydro-2H-pyran-2,6(3H)-dione 7940, aTetrahydropyrans compound, is more and more widely used in various fields.
Reference£º
Patent; Heading (Nanjing) Pharmaceutical Technologies Co., Ltd.; Li, Wensen; Liu, Laiyue; Tang, Aichen; Wang, Yanmin; Wang, Hailong; Yu, Wansong; US2015/18565; (2015); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics