With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.83-87-4,(3R,4S,5R,6R)-6-(Acetoxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate,as a common compound, the synthetic route is as follows.,83-87-4
To a solution of D-glucose (3.00 g, 16.6 mmol) in dry pyridine (33 mL) at 0 C under a nitrogen atmosphere was slowly added acetic anhydride (31.5 mL, 333 mmol). The reaction mixture was stirred at 0C for 1 h before a catalytic amount of DMAP (200 mg,1.67 mmol) was added. As the reaction mixture was allowed to reach rt, it becomes slightly exothermic. After 6 h, the clear yellow mixture was slowly poured into rapidly stirred ice-water (125 mL),giving a sticky solid. After EtOAc extraction (345 mL), evaporation of the solvent and co-evaporation with dry toluene (320 mL), peracetylated glucose was obtained as a yellow solid (5.84 g, 90%). A solution of pentaacetyl-D-glucopyranose (2.00 g, 5.1 mmol) in DCM(20 mL) was stirred in an ice bath while HBr/HOAc (6 mL, 45 wt %) was added drop-wise. After an hour, the solution was washed with ice-water and cold saturated NaHCO3 solution, dried over MgSO4, and concentrated to leave the glucosyl bromide as a pale yellow oil (1.83 g).
As the paragraph descriping shows that 83-87-4 is playing an increasingly important role.
Reference£º
Article; Vo, Quan V.; Trenerry, Craige; Rochfort, Simone; Hughes, Andrew B.; Tetrahedron; vol. 69; 41; (2013); p. 8731 – 8737;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics