Synthetic Route of 499-40-1, Catalysts are substances that increase the reaction rate of a chemical reaction without being consumed in the process. 499-40-1, Name is (2R,3S,4R,5R)-2,3,4,5-Tetrahydroxy-6-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexanal, molecular formula is C12H22O11. In a Article£¬once mentioned of 499-40-1
Polynuclear ruthenium organometallic complexes containing a 1,3,5-triazine ligand: Synthesis, dna interaction, and biological activity
It is now well established that ruthenium complexes are attractive alternatives to platinum-based anticancer agents. Most of the ruthenium compounds currently under investigation contain a single metal center. The synthesis of multinuclear analogues may provide access to novel complexes with enhanced biological activity. In this work, we have synthesized a set of three trinuclear complexes containing organometallic ruthenium fragments?(arene)RuCl?coordinated to a 2,4,6-tris(di2-pyridylamino)-1,3,5-triazine core [(Arene=benzene (2), p-cymene (1), or hexamethylbenzene (3)]. The interaction of the complexes with DNA was extensively studied using a variety of biophysical probes as well as by molecular docking. The complexes bind strongly to DNA with apparent binding constants ranging from 2.20 to 4.79 ¡Á104 M?1. The binding constants from electronic absorption titrations were an order of magnitude greater. The mode of binding to the nucleic acid was not definitively determined, but the evidence pointed to some kind of non-specific electrostatic interaction. None of the complexes displayed any significant antimicrobial activity against the organisms that were studied and exhibited anticancer activity only at high (>100 muM) concentration.
The proportionality constant is the rate constant for the particular unimolecular reaction. the reaction rate is directly proportional to the concentration of the reactant. I hope my blog about 499-40-1 is helpful to your research., Synthetic Route of 499-40-1
Reference£º
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics