A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 499-40-1, Name is (2R,3S,4R,5R)-2,3,4,5-Tetrahydroxy-6-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexanal, molecular formula is C12H22O11. In a Article£¬once mentioned of 499-40-1, category: Tetrahydropyrans
Electrochemical studies and potential anticancer activity in ferrocene derivatives
Several ferrocene derivatives (five mononuclear and two binuclear), including the new N-(p-chlorophenyl)-carboxamidoferrocene (1), were synthesized and their anticancer activity investigated. Two of them, 3 and 7, bearing a benzimidazole backbone were the most active against HeLa cells achieving IC50 values of ~5?muM along with 4 with a dipyridylamine ligand (~6?muM). Complex 6, also with a benzimidazole backbone, displayed slightly higher values (~11?muM). Cyclic voltammetry studies show that while the non-cytotoxic ferrocene derivatives 1, 2, and 5 follow a ferrocene-based redox behavior, derivatives 3, 4, 6, and 7 exhibit a more complex mechanism. These complex mechanisms are consistent with a more effective cytotoxic activity. Moessbauer spectroscopy parameters reflect a very small influence of the substituents.
Balanced chemical reaction does not necessarily reveal either the individual elementary reactions by which a reaction occurs or its rate law.category: Tetrahydropyrans. In my other articles, you can also check out more blogs about 499-40-1
Reference£º
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics