Now Is The Time For You To Know The Truth About Dihydro-2H-pyran-2,6(3H)-dione

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 108-55-4, in my other articles. HPLC of Formula: C5H6O3.

Chemistry is an experimental science, HPLC of Formula: C5H6O3, and the best way to enjoy it and learn about it is performing experiments.Introducing a new discovery about 108-55-4, Name is Dihydro-2H-pyran-2,6(3H)-dione, molecular formula is C5H6O3, belongs to Tetrahydropyrans compound. In a document, author is Collins, Tyler S..

Origin of Bond Elongation in a Uranium(IV) cis-Bis(imido) Complex

The activation of U-N multiple bonds in an imido analogue of the uranyl ion is accomplished by using a system that is very electron-rich with sterically encumbering ligands. Treating the uranium(VI) trans-bis(imido) UI2(NDIPP)(2)(THF)(3) (DIPP = 2,6-diisopropylphenyl and THF = tetrahydrofuran) with tert-butyl(dimethylsilyl)amide (NTSA) results in a reduction and rearrangement to form the uranium(IV) cis-bis(imido) [U(NDIPP)(2)(NTSA)(2)]K-2 (1). Compound 1 features long U-N bonds, pointing toward substantial activation of the N=U=N unit, as determined by X-ray crystallography and H-1 NMR, IR, and electronic absorption spectroscopies. Computational analyses show that uranium(IV)-imido bonds in 1 are significantly weakened multiple bonds due to polarization toward antibonding and nonbonding orbitals. Such geometric control has important effects on the electronic structures of these species, which could be useful in the recycling of spent nuclear fuels.

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 108-55-4, in my other articles. HPLC of Formula: C5H6O3.

Reference:
Tetrahydropyran – Wikipedia,
,Tetrahydropyran – an overview | ScienceDirect Topics