The reaction rate of a catalyzed reaction is faster than the reaction rate of the uncatalyzed reaction at the same temperature.499-40-1, Name is (2R,3S,4R,5R)-2,3,4,5-Tetrahydroxy-6-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexanal, molecular formula is C12H22O11. In a Article£¬once mentioned of 499-40-1, Safety of (2R,3S,4R,5R)-2,3,4,5-Tetrahydroxy-6-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexanal
Twenty-one adducts of the form AgNO3:ER3:L (1:1:1) (E = P, As, Sb; R = Ph, cy, o-tolyl, mes; L = 2,2?-bipyridyl (‘bpy’)-based ligand), together with AgNO3:Pcy3:tpy (2:2:1) and AgNO3:PPh3:tpy (1:2:1) (‘tpy’ ? (2,2?:6,2?-terpyridine)), have been synthesized and characterized by analytical, spectroscopic (IR, far-IR, 1H and 31P NMR) and single crystal X-ray diffraction studies. The resulting complexes are predominantly of the form [(R3 E) AgL]+ NO3-, with trigonal EAgN2 coordination environments, the planarity of which is perturbed by the approach of the nitrate anion. The nitrate ion shows uni- or (semi-)bidentate coordination, excepting the complex AgNO3:P(o-tol)3:dpca (1:1:1) (dpca = bis(2-picolyl)amine) where the anion is uncoordinated, the donor dpca being a pincer-tridentate. The complex AgNO3:Pcy3:tpy (2:2:1), also reported, is dinuclear with a bridging unidentate nitrate and a terpyridine, the latter bridging through its central ring, with the peripheral rings forming chelates to either side, whereas the complex AgNO3:PPh3:tpy (1:2:1) is ionic with a five-coordinate silver, bonded to tridentate tpy and two phosphines.
Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.Safety of (2R,3S,4R,5R)-2,3,4,5-Tetrahydroxy-6-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexanal, you can also check out more blogs about499-40-1
Reference£º
Tetrahydropyran – Wikipedia,
Tetrahydropyran – an overview | ScienceDirect Topics