Some tips on 223734-62-1

As the paragraph descriping shows that 223734-62-1 is playing an increasingly important role.

223734-62-1, 2-((S)-Dec-1-yn-5-yloxy)tetrahydro-2H-pyran is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step 2: Preparation of chiral benzyl alkynol (3).; Table 2Triethylamine 101.19 0.68 g 0.0068Toluene NA 10 ml NAProcedure: A 50-mL, two-necked, round-bottomed flask equipped with a magnetic stirrer and stir bar was charged with zinc triflate (3.17 g, 0.0087 mol) and (+)-N-methylephedrine (1.22 g, 0.0068 mol) in toluene (5 mL). To this mixture triethylamine was added (0.68 g, 0.0068 mol) and this gelatinous mixture was stirred at ambient temperature for 1 -2 h. To this mixture was then added a solution of alkyne (1.57 g, 0.0065 mol) in toluene (4 mL), stirred at ambient temperature for 15-30 minutes followed by addition of a solution of aldehyde (2) (0.50 g, 0.0026 mol in 1-2 mL toluene). Progress of the reaction was monitored by TLC (Note 1). After stirring the mixture at room temperature for 16 h, TLC indicated completion of reaction. The reaction mixture was quenched by slow addition of water (10 mL). This was stirred for 5-10 minutes and organic layer containing desired compound was separated. The aqueous layer was extracted with ethyl acetate (10 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous sodium sulfate, filtered and the filtrate concentrated in vacuo to obtain a crude product. The crude product wa~ purified by column chromatography using 250-400 mesh silica gel. A solvent gradient of ethyl acetate in hexanes (5-20%) was used to elute the product from the column. All fractions containing the desired pure product were combined and concentrated in vacuo to give pure chiral benzyl alkynol (3, 700 mg, -70%). The structure was consistent with spectral data.1H NMR (CDC13, 300 MHz) delta 0.84 (t, 3H, J = 6 Hz), 1.25 – 1.82 (m, 17H), 2.28 (t, 1H, J = 6 Hz), 2.34 -2-42 (m, 2H), 3.42 -3.52 (m, 1H), 3.61 – 3.74 (m, 3H), 3.78 (s, 3H), 3.81 -3.95 (m, 1H), 4.61 (s, 2H), 4.68 (m, 1H), 4.94 – 5.01 (m, 2H), 5.62 (br s, 1H), 5.97 – 6.07 (m, 1H), 6.76 (d, 1H, J= 8 Hz), 7.16 -7.27 (m, 1H), 7.38 -7.43 (m, 1H); 13C NMR (CDC13, 75 MHz) 84.75, -4.38, -3.49, 14.12, 14.16, 14.84, 15.52, 18.06, 18.38, 20.04, 20.24, 22.70, 24.76, 25.25, 25.56, 25.72, 25.94, 29.67, 31.22, 31.28, 32.05, 32.11, 32.65, 33.41, 34.01 , 35.08, 52.22, 62.36, 62.84, 63.09, 66.04, 75.41, 76.44, 76.68, 80.83, 81.22, 85.57, 86.01, 97.31, 98.85, 110.89, 1 14.80, 119.77,1 19.82, 125.56, 127.11, 127.16, 136.46, 136.52, 142.66, 142.73, 155.83, 169.68; MS: (M+Na) 495.6.Note 1 : Completion of the reaction was monitored by thin layer chromatography (TLC) using a thin layer silica gel plate; eluent: 20% ethyl acetate in hexanes., 223734-62-1

As the paragraph descriping shows that 223734-62-1 is playing an increasingly important role.

Reference£º
Patent; UNITED THERAPEUTICS CORPORATION; BATRA, Hitesh; PENMASTA, Raju; SHARMA, Vijay; TULADHAR, Sudersan M.; WALSH, David A.; WO2011/153363; (2011); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics