Downstream synthetic route of 4295-99-2

As the paragraph descriping shows that 4295-99-2 is playing an increasingly important role.

4295-99-2, 4-Cyanotetrahydro-4H-pyran is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,4295-99-2

Example 44 (Synthesis of 4-aminomethyltetrahydropyran hydrochloride) In an autoclave made of stainless equipped with a stirring device, a thermometer and a pressure gauge and having an inner volume of 25L were charged 1685.8 g (containing 15.2 mol of 4-cyanotetrahydropyran) of 65.9% by weight 4-cyanotetrahydropyran-toluene solution, 8.8 kg of 5.86% by weight ammonia-methanol solution, 337.2 g (2.86 mmol in terms of a nickel atom) of developed Raney nickel (available from Nikki Chemical Co., Ltd.; sponge nickel N154D) and 2.1 L of methanol, and the mixture was reacted under hydrogen atmosphere (0.51 to 0.61 MPa) at 50 to 60C for 7 hours under stirring. After completion of the reaction, insoluble materials were filtered, the filtrated material was washed with 2.0 L of methanol, and the filtrate and the washed solution were combined and concentrated under reduced pressure. To a reaction vessel made of glass equipped with a stirring device and a thermometer and having an inner volume of 3 L were charged said concentrate and 833 ml of tetraethylenepentamine, the mixture was stirred at 105 to 115C for 2 hours. After completion of the stirring, said solution was distilled under reduced pressure (70 to 80C, 1.73 to 4.67 kPa) to obtain 1430.2 g of the distilled solution containing 4-aminomethyltetrahydropyran. To a reaction vessel made of glass equipped with a stirring device, a thermometer and a dropping funnel and having an inner volume of 20 L were charged 8.3 L of n-butanol and 1232 ml (15.0 mol) of 37% by weight hydrochloric acid, and in a salt-ice bath, said distulled solution was gradually added dropwise to the mixture while maintaining a temperature of the mixture to 0C or therearound, and after completion of dropwise addition, the mixture was stirred at room temperature for 30 minutes. An operation that the resulting solution was concentrated under reduced pressure, and 5.0 L of n-butanol was added to the concentrate and further concentrated was repeated twice. Then, in a salt-ice bath, when the concentrate was stirred for 50 minutes, a solid was precipitated and filtered. The filtered material was washed with 1.7 L of toluene, and then, it was dried under reduced pressure at 60C to give 1692.9 g (Isolation yield: 73.6%) of 4-aminomethyltetrahydropyran hydrochloride as white crystals. Physical properties of 4-aminomethyltetrahydropyran hydrochloride are as follows. Melting point; 190 to 193C 1H-NMR (DMSO-d6, delta (ppm)); 1.13 to 1.26 (2H, m), 1.63 to 1.68 (2H, m), 1.78 to 1.92 (1H, m), 2.67 (2H, d, J=7.1Hz), 3.22 to 3.30 (2H, m), 3.82 to 3.87 (2H, m), 8.21 (3H, brs) CI-MS (m/e); 116 (M+1-HCl), 99

As the paragraph descriping shows that 4295-99-2 is playing an increasingly important role.

Reference£º
Patent; Ube Industries, Ltd.; EP1671937; (2006); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Analyzing the synthesis route of 4295-99-2

The synthetic route of 4295-99-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.4295-99-2,4-Cyanotetrahydro-4H-pyran,as a common compound, the synthetic route is as follows.,4295-99-2

To a solution of tetrahydro-2H-pyran-4-carbonitrile (2 g, 18.00 mmol) in tetrahydrofuran (10 ml_) at 0 – 5 C was added slowly LHMDS (21.59 ml_, 21.59 mmol). The mixture was stirred for 1.5 hrs at 0 C. lodomethane (3.37 ml_, 54.0 mmol) was added slowly and stirring was continued for 30 min at ~0 C and then for ~2 hrs at room temperature. The mixture was cooled to 0 C and carefully diluted with 1 N aqueous hydrochloride solution (30 ml_) and EtOAc (5 ml_) and concentrated under reduced pressure. The residue was taken up in diethylether and the separated organic layer was washed with brine, dried over sodium sulfate, filtered off and concentrated under reduced pressure providing crude 4-methyltetrahydro-2H-pyran-4-carbonitrile (1.8 g) as an orange oil, which was directly used in the next reaction without further purification.LCMS (m/z): 126.1 [M+H]+; Rt = 0.44 min.

The synthetic route of 4295-99-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; NOVARTIS AG; BARSANTI, Paul A.; HU, Cheng; JIN, Xianming; NG, Simon C.; PFISTER, Keith B.; SENDZIK, Martin; SUTTON, James; WO2012/101063; (2012); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Some tips on 4295-99-2

4295-99-2 4-Cyanotetrahydro-4H-pyran 11815837, aTetrahydropyrans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.4295-99-2,4-Cyanotetrahydro-4H-pyran,as a common compound, the synthetic route is as follows.

In a 30 ml glass flask equipped with a stirrer, a thermometer and a dropping funnel, 1.0 g (9.0 mmol) of 4-cyanotetrahydropyran and 5 ml of dry tetrahydrofuran were added, and the liquid temperature was maintained at 0 to 5C.,10.8 ml (10.8 mmol) of a 1.0 mol/l lithium bis (trimethylsilyl)amide in tetrahydrofuran solution was gently added dropwise, and the mixture was stirred at the same temperature for 1.5 hours. Then, 3.8 g (27 mmol) of iodomethane was added, the mixture was reacted at room temperature for 2 hours. After completion of the reaction, 15 mmol (15 mmol) of 1.0 mmol / l hydrochloric acid was added to the obtained reaction solution, under ice cooling, the reaction solution was concentrated. To the concentrate, 10 ml of a saturated aqueous sodium chloride solution was added, extracted twice with 30 ml of ethyl acetate, the extract was dried over anhydrous magnesium sulfate. After filtration, the concentrate was distilled under reduced pressur to obtain 0.98 g of 4-methyl-4-cyanotetrahydropyran (isolation yield: 87%) as light yellow liquid., 4295-99-2

4295-99-2 4-Cyanotetrahydro-4H-pyran 11815837, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; UBE INDUSTRIES LIMITED; NISHINO, SHIGEYOSHI; HIROTSU, KENJI; SHIMA, HIDEYOSHI; IWAMOTO, KEIJI; HARADA, TAKASHI; (13 pag.)JP5673729; (2015); B2;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Some tips on 4295-99-2

4295-99-2, 4295-99-2 4-Cyanotetrahydro-4H-pyran 11815837, aTetrahydropyrans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.4295-99-2,4-Cyanotetrahydro-4H-pyran,as a common compound, the synthetic route is as follows.

a) Preparation of c-(tetrahydro-pyran-4-yl)-methylammonium acetate A cold (ice water bath) solution of tetrahydro-4H-pyran-4-one (7.5 g, 75 mmol) and tosylmethylisocyanide (16.05 g, 82.4 mmol) in DME (125 ml) was treated with a suspension of potassium t-butoxide (16.8 g, 150 mmoles) in t-butyl alcohol (250 ml). The reaction mixture was stirred at room temperature for 31/2 hours, and then diluted with ether (250 ml). The mixture was successively washed with water and brine, then dried over sodium sulfate, filtered, and concentrated. The crude product was purified by short path distillation under high vacuum to give the nitrile as colorless oil (2.98 g). This material was dissolved in 1M borane/tetrahydrofuran (THF) (134 ml, 134 mmol) and stirred at rt overnight. Excess borane was quenched by adding methanol (rt, 1 h), and the mixture was concentrated to dryness. The residue was dissolved in 4N HCl/dioxane, stirred at rt for 1 h and then concentrated under reduced pressure. The solid residue was triturated with ether and collected by suction filtration. A suspension of this material (1.81 g, 11.9 mmol) in THF (30 ml) was treated with 1N NaOH (11.9 ml, 11.9 mmol) at rt for ? h. The THF was removed by distillation and the aqueous solution was saturated with NaCl then extracted with dichloromethane. The organic layer was dried over sodium sulfate and concentrated under reduced pressure. The residue was treated with acetic acid (0.68 ml, 11.9 mmol) to provide, after drying in a vacuum oven, c-(tetrahydro-pyran-4-yl)-methylammonium acetate (1.71 g).

4295-99-2, 4295-99-2 4-Cyanotetrahydro-4H-pyran 11815837, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; Chen, Li; Chen, Shaoqing; Michoud, Christophe; US2006/63804; (2006); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Brief introduction of 4295-99-2

4295-99-2, The synthetic route of 4295-99-2 has been constantly updated, and we look forward to future research findings.

4295-99-2, 4-Cyanotetrahydro-4H-pyran is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of tetrahydro-2H-pyran-4-carbonitrile (2 g, 18.00 mmol) in tetrahydrofuran (10 mL) at 0 – 5 C was added slowly LHMDS (21.59 mL, 21.59 mmol). The mixture was stirred for 1.5 hrs at 0 C. lodomethane (3.37 mL, 54.0 mmol) was added slowly and stirring was continued for 30 min at ~0 C and then for ~2 hrs at room temperature. The mixture was cooled to 0 C and carefully diluted with IN aqueous hydrochloride solution (30 mL) and EtOAc (5 mL) and concentrated under reduced pressure. The residue was taken up in diethylether and the separated organic layer was washed with brine, dried over sodium sulfate, filtered off and concentrated under reduced pressure providing crude 4-methyltetrahydro-2H-pyran-4-carbonitrile (1.8 g) as an orange oil, which was directly used in the next reaction without further purification. LCMS (m/z): 126.1 [M+H]+; Retention time = 0.44 min.

4295-99-2, The synthetic route of 4295-99-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; NOVARTIS AG; ANTONIOS-MCCREA, William R.; BARSANTI, Paul A.; HU, Cheng; JIN, Xianming; MARTIN, Eric J.; PAN, Yue; PFISTER, Keith B.; SENDZIK, Martin; SUTTON, James; WAN, Lifeng; WO2012/66065; (2012); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Simple exploration of 4295-99-2

4295-99-2 4-Cyanotetrahydro-4H-pyran 11815837, aTetrahydropyrans compound, is more and more widely used in various fields.

4295-99-2, 4-Cyanotetrahydro-4H-pyran is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,4295-99-2

B. 4-(aminomethyl)tetrahydro-4H-pyran To a solution of the compound of the Example 80A (10 g, 89.9 mmol) in absolute ethanol (200 mL) is added Raney Nickel (2.0 g, 50% slurry in water). The mixture is stirred for 24 hours at ambient temperature under 40 psig of hydrogen. The solution is filtered through celite and the solution concentrated under reduced pressure. The residue is taken up in ether (2L) washed with brine, dried in anh. MgSO4, then concentrated under reduced pressure to give the title commpound.

4295-99-2 4-Cyanotetrahydro-4H-pyran 11815837, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; Vertex Pharmaceuticals, Incorporated; US5783701; (1998); A;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Analyzing the synthesis route of 4295-99-2

4295-99-2, The synthetic route of 4295-99-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.4295-99-2,4-Cyanotetrahydro-4H-pyran,as a common compound, the synthetic route is as follows.

To a solution of tetrahydro-2H-pyran-4-carbonitrile (800 mg, 7.20 mmol) in THF (20 ml_) was added aluminum(lll) lithium deuteride at 0 C. The mixture was stirred at 0 C for 2 hr. To the stirred reaction mixture was sequentially added 300 uL of water, 900 muIota_ of 1 N NaOH and 300 muIota_ of water. The mixture was filtered through a thin layer of celite to remove the solid. The filtrate was dried over sodium sulfate, filtered off and concentrated in vacuo giving 700 mg of titled compound. LCMS (m/z): 1 18.2 [M+H]+, retention time = 0.25 min. The crude product was used directly for next step.

4295-99-2, The synthetic route of 4295-99-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; NOVARTIS AG; ANTONIOS-MCCREA, William R.; BARSANTI, Paul A.; HU, Cheng; JIN, Xianming; LIN, Xiaodong; MARTIN, Eric J.; PAN, Yue; PFISTER, Keith B; RENHOWE, Paul A.; SENDZIK, Martin; SUTTON, James; WAN, Lifeng; WO2012/101065; (2012); A2;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

New learning discoveries about 4295-99-2

As the paragraph descriping shows that 4295-99-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.4295-99-2,4-Cyanotetrahydro-4H-pyran,as a common compound, the synthetic route is as follows.,4295-99-2

Intermediate 54-(3~chloropropyl)-tetrahydro-2H-pyran-4-carbonitrile. To a stirred solution of 1 M LiHMDS (25 mL, 25 mmol) in THF (10 mL) at -78 0C was added dropwise a solution of intermediate 4 (2.23 g, 20 mmol) in THF (15 mL) over 10 minutes. After 40 min, l-chloro-3-iodopropane (2.7 mL, 25 mmol) was added at once, stirred at -78 C for 1 h and 4 h room temperature. Then the reaction mixture was diluted with ether (100 mL), washed with water (20 mL) and brine (20 mL), dried (Na2SO4), filtered and concentrated to give yellow oil which was purified by flash column chromatography using 10-30% EtOAc/Hexanes to afford the product intermediate 5 as a colorless liquid (3.737 g, 99%). 1H NMR (500 MHz, CDCl3) delta: 3.97 (2H, dd, J = 11.3, 3.7 Hz), 3.71 (2H, td, J = 12.2, 1.8 Hz), 3.61 (2H, t, J = 6.3 Hz), 2.05-1.98 (2H, m), 1.88 (2H, dd, J = 13.4, 1.8 Hz), 1.77-1.74 (2H, m), 1.65-1.59 (2H, m).

As the paragraph descriping shows that 4295-99-2 is playing an increasingly important role.

Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; WO2007/58646; (2007); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Simple exploration of 4295-99-2

4295-99-2, 4295-99-2 4-Cyanotetrahydro-4H-pyran 11815837, aTetrahydropyrans compound, is more and more widely used in various fields.

4295-99-2, 4-Cyanotetrahydro-4H-pyran is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A solution of 2.46 M n-butyllithium in hexanes (29 mL, 71 mmol) was added dropwise to a stirred solution of (S)-2-(chloromethyl)oxirane (6.0 g, 64.8 mmol) and oxane-4- carbonitrile (8.4 g, 75.6 mmol) in THF (70 mL) at -78oC. The mixture was stirred at -78oC for two hours and then stirred overnight at room temperature. The mixture was quenched by the addition of saturated ammonium chloride, and extracted twice with dichloromethane. The combined organic layers were dried (Na2SO4) and concentrated. The residue was purified via MPLC eluting with 20% ethyl acetate in petroleum ether to afford (S)-4-(oxiran-2- ylmethyl)tetrahydro-2H-pyran-4-carbonitrile (4.5 g, 42%) as a colorless liquid.

4295-99-2, 4295-99-2 4-Cyanotetrahydro-4H-pyran 11815837, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; LYCERA CORPORATION; AICHER, Thomas, Daniel; TAYLOR, Clarke, B.; VANHUIS, Chad, A.; (410 pag.)WO2016/201225; (2016); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Some tips on 4295-99-2

4295-99-2, 4295-99-2 4-Cyanotetrahydro-4H-pyran 11815837, aTetrahydropyrans compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.4295-99-2,4-Cyanotetrahydro-4H-pyran,as a common compound, the synthetic route is as follows.

To a solution of tetrahydro-2H-pyran-4-carbonitrile (2 g, 18.00 mmol) in tetrahydrofuran (10 mL) at 0 – 5 C was added slowly LHMDS (21.59 mL, 21.59 mmol). The mixture was stirred for 1.5 hrs at 0 C. lodomethane (3.37 mL, 54.0 mmol) was added slowly and stirring was continued for 30 min at ~0 C and then for ~2 hrs at room temperature. The mixture was cooled to 0 C and carefully diluted with IN aqueous hydrochloride solution (30 mL) and EtOAc (5 mL) and concentrated under reduced pressure. The residue was taken up in diethylether and the separated organic layer was washed with brine, dried over sodium sulfate, filtered off and concentrated under reduced pressure providing crude 4-methyltetrahydro-2H-pyran-4-carbonitrile (1.8 g) as an orange oil, which was directly used in the next reaction without further purification. LCMS (m/z): 126.1 [M+H]+; Retention time = 0.44 min.

4295-99-2, 4295-99-2 4-Cyanotetrahydro-4H-pyran 11815837, aTetrahydropyrans compound, is more and more widely used in various fields.

Reference£º
Patent; NOVARTIS AG; ANTONIOS-MCCREA, William, R.; BARSANTI, Paul, A.; HU, Cheng; JIN, Xianming; MARTIN, Eric, J.; PAN, Yue; PFISTER, Keith, B.; SENDZIK, Martin; SUTTON, James; WAN, Lifeng; WO2012/66070; (2012); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics