Analyzing the synthesis route of 53911-68-5

The synthetic route of 53911-68-5 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.53911-68-5,4-(4-Chlorophenyl)dihydro-2H-pyran-2,6(3H)-dione,as a common compound, the synthetic route is as follows.

The solution of commercial 2,4-dichloro-6-nitroaniline (621 mg) and 3-(4- chlorophenyl)glutaric anhydride (674 mg) in 1,4-dioxane (2 ml) was heated to reflux shortly and stirred at rt for Ih. The solvent was removed by distillation and the residue dried in vacuo. The oily residue was dissolved in acetic acid (6 ml) and heated to reflux. Iron powder (1.01 g) was added and the mixture stirred under reflux for 1 h. Then cone. HCI (6 ml) was added cautiously and the green-yellow solution was refluxed for additional 2 h. All volatiles were removed at the water aspirator and the residue precipitated from acetic acid/cone. HCI solution with water. The solid was collected by suction filtration and washed well with IM HCI and water. The crude was recrystallised from acetic acid to give 4-(5,7-dichloro-2- benzimidazolyl)-3-(4-chlorophenyl)butanoic acid HCI (325 mg) as colourless crystals.1H-NMR (500 MHz, DMSOd5): delta (ppm) = 2.70 (dd, J = 16.2, 8.9 Hz, IH), 2.79 (dd, J = 16.2, 5.9 Hz, IH), 3.35 (dd, J = 14.7, 8.3 Hz, IH), 3.43 (dd, J = 14.7, 7.6 Hz, IH), 3.83 (m, IH), 7.33 (q, J = 8.6 Hz, 4H), 7.59 (d, J = 1.6 Hz, IH), 7.73 (d, J = 1.6 Hz, IH).13C-NMR and DEPT (125 MHz, DMSOd6) : delta (ppm) = 33.39 (CH2), 39.39 (CH), 39.46 (CH2), 112.58 (CH), 119.26 (C), 123.64 (CH), 128.28 (2 CH), 128.63 (C), 129.14 (2 CH), 131,1 (br, C), 131,29 (C), 134.40 (C), 141.22 (C), 154.96 (C), 172.24 (CO). MS ( + ESI): m/z = 383 (M + H)., 53911-68-5

The synthetic route of 53911-68-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; UNIVERSITAET DES SAARLANDES; ENGEL, Matthias; FROeHNER, Wolfgang; STROBA, Adriane; BIONDI, Ricardo M.; WO2010/43711; (2010); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Brief introduction of 53911-68-5

The synthetic route of 53911-68-5 has been constantly updated, and we look forward to future research findings.

53911-68-5, 4-(4-Chlorophenyl)dihydro-2H-pyran-2,6(3H)-dione is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,53911-68-5

General procedure: The N-hydroxy compounds were prepared by the following procedure. 4-substituted anhydride (1 mol) and hydroxylamine hydrochloride (1.14 mol) were suspended in isopropanol (150 mL). A solution of 46% sodium hydroxide solution (3 mol) was added to the mixture was and vigorously stirred for 4 h at 60-65C. The mixture was then acidified to pH 2 by 2 N HCl and extracted with dichloromethane. The dichloromethane layer was evaporated under vacuum the solid thus formed was filtered and recrystallized using methanol.

The synthetic route of 53911-68-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Ponnusamy, Kannan; Davis Presley; Nagapillai, Prakash; Deivanayagam, Eswaramoorthy; Indian Journal of Heterocyclic Chemistry; vol. 28; 2; (2018); p. 275 – 278;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Downstream synthetic route of 53911-68-5

As the paragraph descriping shows that 53911-68-5 is playing an increasingly important role.

53911-68-5, 4-(4-Chlorophenyl)dihydro-2H-pyran-2,6(3H)-dione is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

53911-68-5, General procedure: To the cold 0.1 M toluene solution of anhydride (10 mmol), alkaloid (1.1 equiv) and alcohol (1.5 equiv) were added. The reaction mixture was stirred until >90% conversion was reached (see Table 3) and the reaction was stopped by the addition of 5% HCl. The organic layer was washed once more with 5% HCl and evaporated. Oily residue was dissolved in 2% K2CO3 and washed successively with EtOAc. Aqueous solution was acidified with HCl to pH 2 and extracted with EtOAc. The organic extracts were dried over Na2SO4 and evaporated in vacuo.

As the paragraph descriping shows that 53911-68-5 is playing an increasingly important role.

Reference£º
Article; Iv?i?, Trpimir; Novak, Jurica; Do?li?, Nada; Hamer?ak, Zdenko; Tetrahedron; vol. 68; 39; (2012); p. 8311 – 8317;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

New learning discoveries about 53911-68-5

As the paragraph descriping shows that 53911-68-5 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.53911-68-5,4-(4-Chlorophenyl)dihydro-2H-pyran-2,6(3H)-dione,as a common compound, the synthetic route is as follows.

A mixture of 3-(4-chlorophenyl)glutaric anhydride (0.5 g) and commercial 2-amino-4-chlorothiophenol (0.37 g) is dissolved in boiling dichloromethane (3 ml). The solution is stirred overnight at rt. The precipitate is isolated by suction filtration, washed with dichloromethane, and dried in vacuo. The crude product is recrystallised from acetone to give 0.3 g of 4-(5-chloro-2-benzothiazolyl)-3-(4-chlorophenyl)butanoic acid as colourless crystals.1H-NMR (500 MHz, DMSO-d6): delta (ppm)=2.08 (s, 3H), 2.65 (dd, J=16.0, 8.6 Hz, 1H), 2.79 (dd, J=16.0, 6.2 Hz, 1H), 3.45 (dd, J=14.8, 9.3 Hz, 1H), 3.53 (dd, J=14.8, 5.9 Hz, 1H), 3.63 (m, 1H), 7.29 (d, J=8.7 Hz, 2H), 7.33 (d, J=8.7 Hz, 2H), 7.42 (dd, J=8.6, 2.0 Hz, 1H), 7.99 (d, J=2.0 Hz, 1H), 8.02 (d, J=8.6 Hz, 1H), 12.17 (br s, 1H).13C-NMR and DEPT (125 MHz, DMSO-d6): delta (ppm)=39.27 (CH2), 40.02 (CH2), 41.17 (CH), 121.59 (CH), 123.42 (CH), 124.84 (CH), 128.11 (2CH), 129.54 (2CH), 130.70 (C), 131.12 (C), 133.35 (C), 141.45 (C), 153.38 (C), 171.82 (C), 172.42 (CO). MS (+ESI): m/z=366 (M+H).

As the paragraph descriping shows that 53911-68-5 is playing an increasingly important role.

Reference£º
Patent; UNIVERSITAET DES SAARLANDES; US2012/46307; (2012); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics