Simple exploration of 1228779-96-1

The synthetic route of 1228779-96-1 has been constantly updated, and we look forward to future research findings.

1228779-96-1, 3-Nitro-4-(((tetrahydro-2H-pyran-4-yl)methyl)amino)benzenesulfonamide is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

The mixture of 3- ((1H-pyrrolo [2, 3-b] pyridin-5-yl) oxy) -4′- ((2-phenylpyrrolidin-1-yl) methyl) – [1, 1′-biphenyl] -4-carboxylic acid (170 mg, 0.35 mmol), triethylamine (106 mg, 1.05 mmol), 2- (7-azabenzotriazol-1-yl) -N, N, N’, N’-tetramethyluronium hexafluorophosphate (201 mg, 0.53 mmol) in DCM (10 mL) was stirred for 2 hours at room temperature. To the resulted reaction mixture were added 3-nitro-4- (((tetrahydro-2H-pyran-4-yl) methyl) amino) benzenesulfonamide (167 mg, 0.53 mmol) and DMAP (5 mg, 0.04 mmol) and then stirred overnight. The reaction mixture was extracted with DCM (30 mL) and water (30 mL). The organic layer was concentrated in vacuo and purified by chromatography column on silica (eluent: DCM/MeOH = 20/1 to 10/1) to afford a crude product, which was then purified with Pre-HPLC to give the product (14.28 mg). 1H NMR (400 MHz, DMSO-d 6) delta ppm: 12.41 (br, 1H), 11.67 (br, 1H), 8.51 (br, 2H), 8.04 (m, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.42-7.27 (m, 12H), 6.99 (m, 2H), 6.37 (m, 1H), 3.85 (d, J = 8.0 Hz, 2H), 3.67 (m, 1H), 3.28-3.23 (m, 6H), 3.10-2.96 (m, 2H), 2.15 (m, 2H), 2.01 (m, 1H), 1.87 (m, 2H), 1.61 (d, J = 8.0Hz, 2H), 1.45 (m, 2H). MS (ESI, m/e) [M+1] + 787.2.

The synthetic route of 1228779-96-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; BEIGENE, LTD.; GUO, Yunhang; XUE, Hai; WANG, Zhiwei; SUN, Hanzi; (493 pag.)WO2019/210828; (2019); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Downstream synthetic route of 101691-65-0

#N/A

101691-65-0, (Tetrahydro-2H-pyran-4-yl)methyl 4-methylbenzenesulfonate is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step 2 [0340] (Tetrahydro-2H-pyran-4-yl)methyl 4-methylbenzenesulfonate obtained in Step 1 (1.20 g, 4.44 mmol) was dissolved in acetone (15 mL), sodium iodide (2.00 g, 13.3 mmol) was added thereto, and under reflux with heating, the mixture was stirred for 4 hours. After cooling the reaction mixture to room temperature, the precipitated solid was removed by filtration, and the filtrate was evaporated under reduced pressure. Chloroform was added to the residue, and the precipitated solid was removed by filtration. The filtrate was concentrated under reduced pressure, whereby 4-(iodomethyl)tetrahydro-2H-pyran (0.946 g, 94%) was obtained. 1H NMR (300 MHz, CDCl3, delta): 3.99-3.96 (m, 2H), 3.37 (td, J = 11.7, 2.1 Hz, 2H), 3.10 (d, J = 6.6 Hz, 2H), 1.81-1.65 (m, 3H), 1.37-1.24 (m, 2H).

#N/A

Reference£º
Patent; Kyowa Hakko Kirin Co., Ltd.; FURUTA, Takayuki; SAWADA, Takashi; DANJO, Tomohiro; NAKAJIMA, Takahiro; UESAKA, Noriaki; EP2881394; (2015); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Simple exploration of 873397-34-3

#N/A

873397-34-3, Tetrahydro-2H-pyran-3-carboxylic acid is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Thionyl chloride (0.17 mL, 2.4 mmol) was added to a stirred solution of tetrahydro-pyran-3- carboxylic acid (0.26 g, 2.0 mmol) in DCM (4 mL) and DMF (0.1 mL). The mixture was stirred at room temperature for 30 min then Meldrum’s acid (0.576 g, 4.0 mmol) was added and the mixture was left to stir at room temperature for 1 hour. The reaction mixture was washed with a 2 N HC1 (aq) solution and evaporated under reduced pressure. The residue was dissolved in methanol and heated to reflux for 6 h. The mixture was then concentrated under reduced pressure to give the title compound (0.27 g, 75percent yield) which was used in the next step without further purification.

#N/A

Reference£º
Patent; CANCER RESEARCH TECHNOLOGY LIMITED; CARSWELL, Emma, L.; CHARLES, Mark, David; COCHI, Anne; DUGAN, Benjamin, J.; EKWURU, Chukuemeka, Tennyson; ELUSTONDO, Fred; FOWLER, Katherine, M.; LEROUX, Frederic, Georges, Marie; MONCK, Nathaniel, J.T.; OTT, Gregory, R.; ROFFEY, Jonathan, R.; SIDHU, Gurwinder; TREMAYNE, Neil; (305 pag.)WO2018/55402; (2018); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Simple exploration of 101691-94-5

The synthetic route of 101691-94-5 has been constantly updated, and we look forward to future research findings.

101691-94-5, 4-(Iodomethyl)tetrahydro-2H-pyran is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Reference Example 40 tert-butyl 4-{2-[methoxy(methyl)amino]-2-oxo-1-(tetrahydro-2H-pyran-4-ylmethyl)ethyl}benzoate [Show Image] Lithium diisopropylamide (2M tetrahydrofuran solution, 6.9 mL) was diluted with tetrahydrofuran (20 mL), a solution of tert-butyl 4-{2-[methoxy(methyl)amino]-2-oxoethyl}benzoate (3.70 g) in a mixed solvent of tetrahydrofuran (20 mL) and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (12 mL) were added at -78C, and the mixture was stirred for 1 hr. To the reaction mixture was added a solution of 4-(iodomethyl)tetrahydro-2H-pyran (3.30 g) in tetrahydrofuran (20 mL) at -78C and the mixture was stirred for 3 hr. The mixture was slowly warmed to room temperature, and stirred overnight. A saturated aqueous ammonium chloride solution was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The ethyl acetate layer was washed with saturated brine, dried (MgSO4) and concentrated. The residue was subjected to silica gel column chromatography, and the title compound (3.81 g, yield 76%) was obtained as a colorless amorphous solid from a fraction eluted with ethyl acetate-hexane (1:1, volume ratio). MS:378(MH+).

The synthetic route of 101691-94-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Takeda Pharmaceutical Company Limited; EP2149550; (2010); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Analyzing the synthesis route of 101691-94-5

As the paragraph descriping shows that 101691-94-5 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.101691-94-5,4-(Iodomethyl)tetrahydro-2H-pyran,as a common compound, the synthetic route is as follows.

Under argon, 1.31 ml of 1,1,1,3,3,3-hexamethyldisilazane are dissolved in 20 ml of tetrahydrofuran. With ice cooling, 2.3 ml of n-butyllithium (2.5 M in n-hexane) are added dropwise, and the mixture is stirred at 0 C. for another 30 minutes. At -78 C., this solution is then added dropwise to a stirred solution of 2.0 g of tert-butyl 2-ethoxycarbonylmethyl-5,5-dioxo-5H-phenothiazine-10-carboxylate in 100 ml of tetrahydrofuran. The reaction mixture is stirred at -78 C. for 20 minutes, and 1.1 g of 4-(iodomethyl)tetrahydro-2H-pyran are then added dropwise. The cooling bath is removed and the mixture is allowed to slowly warm to room temperature. The reaction mixture is stirred at room temperature overnight. 10 ml of water are then added, the tetrahydrofuran is removed under reduced pressure and the residue is extracted three times with in each case 100 ml of ethyl acetate. The combined organic phases are dried over MgSO4 and then concentrated under reduced pressure. The residue is purified on silica gel using the mobile phase n-heptane:ethyl acetate (100%:0%)=>n-heptane:ethyl acetate (50%:50%). This gives 700 mg of tert-butyl 2-[1-ethoxycarbonyl-2-(tetrahydropyran-4-yl)ethyl]-5,5-dioxo-5H-phenothiazine-10-carboxylate. C27H33NO7S (515.63), LCMS (ESI): 533.2 (M+NH4+), 460.1 (M-tert-butyl+H+), Rf (n-heptane:EA=1:1)=0.28.

As the paragraph descriping shows that 101691-94-5 is playing an increasingly important role.

Reference£º
Patent; SANOFI-AVENTIS; US2009/325942; (2009); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Analyzing the synthesis route of 72886-97-6

The synthetic route of 72886-97-6 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.72886-97-6,(S)-Tetrahydro-2H-pyran-3-ol,as a common compound, the synthetic route is as follows.

To a solution of (S)-tetrahydro-2H-pyran-3-ol (compound 3) (51.0 mg, 0.50 mmol) in CH2Cl2 (2.5 mL) was added with Et3N (55 mg, 0.55 mmol) and DMAP (3.0 mg, 0.025 mmol), followed by the addition of cinnamoyl chloride (92.0 mg, 0.55 mmol) at 0 C. The mixture was stirred for 18 h then added with saturated NaHCO3 solution. The organic phase was separated and washed with brine, dried with anhydrous Na2SO4. The crude product was purified via silica gel column with PE/EtOAc (30:1-10:1) to give the title compound 4 as white foam

The synthetic route of 72886-97-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Geng, Yang; Zheng, Maolin; Li, Jingya; Zou, Dapeng; Wu, Yusheng; Wu, Yangjie; Tetrahedron Letters; vol. 58; 42; (2017); p. 3966 – 3969;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Simple exploration of 3301-94-8

3301-94-8 6-Butyltetrahydro-2H-pyran-2-one 18698, aTetrahydropyrans compound, is more and more widely used in various.

3301-94-8, 6-Butyltetrahydro-2H-pyran-2-one is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A solution of diisopropylamine (1.21 ml, 8.63 mmol) in THF (tetrahydrofuran) (33 ml) was cooled to -78C under a nitrogen atmosphere, to which a butyllithium-hexane solution (1.1 M, 7.27 ml, 8.00 mmol) was added, and 10 minutes later, a solution of 6-butyltetrahydro-2H-pyran-2-one (1.00 g, 6.40 mmol) in THF (2 ml) was dropped, and stirred for 10 minutes. Subsequently, a solution of phenylselenyl chloride (1.19 g, 6.21 mmol) in THF (5 ml) was slowly dropped, and stirred at -78C for another 30 minutes, to which a saturated ammonium chloride solution was dropped to terminate the reaction. The reaction mixture was extracted with hexane, and its organic layer was dried with anhydrous sodium sulfate and distilled off under reduced pressure. The residue was purified by a silica gel column chromatography (hexane-ethyl acetate 10:1-8:1-6:1) so as to obtain a pure phenylselenide (842 mg, 42%) as a diastereomer mixture.

3301-94-8 6-Butyltetrahydro-2H-pyran-2-one 18698, aTetrahydropyrans compound, is more and more widely used in various.

Reference£º
Patent; Tsujimoto Chemical Co., Ltd.; Iinuma, Munekazu; IINUMA, Munekazu; EP2832732; (2015); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics