Simple exploration of 103260-44-2

103260-44-2, The synthetic route of 103260-44-2 has been constantly updated, and we look forward to future research findings.

103260-44-2, Ethyl 2-(tetrahydro-2H-pyran-4-yl)acetate is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

80 mg (0.38 mmol) of Example 11 B were dissolved in 1 ml_ of absolute ethanol, 262 mg (1.52 mmol) of ethyl tetrahydropyran-4-yl-acetate, and 45.1 mg (1.10 mmol) of sodium hydride (60 % suspension in mineral oil) were added. The reaction mixture was heated to 1500C for 40 min in a microwave oven. Cooling to 200C was followed by evaporation of the solvent under reduced pressure. The residue was treated with water (10 ml_), acidified with HCI (10 % in water) and extracted two times with dichloromethane (2 ml_). The organic layer was dried over sodium sulphate, filtered and the filtrate was concentrated under reduced pressure. The residue was triturated with ether to give 65 mg (53.7 %) of the product as a white solid.HPLC-MS (Method Grad_C8_NH4COOH): Rt: 1.89 minMS (ESI pos): m/z = 319 (M+H)+.

103260-44-2, The synthetic route of 103260-44-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; WO2009/121919; (2009); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Downstream synthetic route of 103260-44-2

103260-44-2, 103260-44-2 Ethyl 2-(tetrahydro-2H-pyran-4-yl)acetate 2773412, aTetrahydropyrans compound, is more and more widely used in various.

103260-44-2, Ethyl 2-(tetrahydro-2H-pyran-4-yl)acetate is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Intermediate 32: 2-(Tetrahydro-2/-/-pyran-4-yl)ethanolTo an ice-cold solution of lithium aluminium hydride (12.6 ml, 2.3M solution in tetrahydrofuran) in dry tetrahydrofuran (20 ml) and under nitrogen, was added a solution of ethyl tetrahydro-2/-/-pyran-4-yl acetate (5g) in dry tetrahydrofuran dropwise over 10 minutes. Following the addition the reaction was heated to reflux, overnight. The reaction was cooled and diluted with diethyl ether (100 ml). A 5M aqueous solution of sodium hydroxide (-10 ml) was added cautiously to the reaction mixture until the effervescence ceased. The formed white precipitate was filtered off. The resulting filtrate was dried over potassium carbonate, filtered and concentrated in vacuo. This yielded the title compound as a colourless oil (3.3g). MS calcd for (C7H14O2)” = 130 MS found (electrospray): (M+H)+ = 1311 H NMR (DMSO): 4.35 (1 H, t), 3.80 (2H, m), 3.43 (2H, m), 3.25 (2H, m), 1.60 (1 H, m), 1.54 (2H, m), 1.35 (2H, m), 1.13 (2H, m).

103260-44-2, 103260-44-2 Ethyl 2-(tetrahydro-2H-pyran-4-yl)acetate 2773412, aTetrahydropyrans compound, is more and more widely used in various.

Reference£º
Patent; SMITHKLINE BEECHAM CORPORATION; WO2008/101867; (2008); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Analyzing the synthesis route of 103260-44-2

As the paragraph descriping shows that 103260-44-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.103260-44-2,Ethyl 2-(tetrahydro-2H-pyran-4-yl)acetate,as a common compound, the synthetic route is as follows.

A solution of sodium hydroxide (15.9 g, 44.06 mmol) in water (150 ml) was added dropwise to a solution of ethyl 2-(tetrahydro-2H-pyran-4-yl)acetate (15 g, 8.81 mmol) in methanol (150 ml) at a temperature of 0 C or below, and the mixture was stirred at room temperature for 15 hr. The solvent of the reaction mixture was removed by distillation under reduced pressure, and the water layer was adjusted to pH 3 by the addition of 1 M hydrochloric acid and was extracted with ethyl acetate. The organic layer was washed with saturated brine and was dried over anhydrous sodium sulfate, and the filtrate was concentrated under reduced pressure to give a corresponding acid as a colorless solid (12.0 g, 94%). This compound was used in the next step without further purification. Benzyl bromide (14.3 g, 83.33 mmol) was added dropwise to a suspension of this compound (10.0 g, 69.44 mmol) and anhydrous potassium carbonate (28.8 g, 208.3 mmol) in acetonitrile (100 ml) at room temperature, and the mixture was refluxed for 48 hr. The solvent of the mixture was removed by distillation under reduced pressure, the residue was diluted with water and was extracted with dichloromethane, and the organic layer was dried over anhydrous sodium sulfate. The filtrate was concentrated under reduced pressure, and the residue was chromatographed on silica gel column (hexane:ethyl acetate = 9:1) to give the tile compound as an oil (12.0 g, yield 75%). 1H-NMR (400 MHz, CDCl3): delta (ppm) 7.39-7.34 (m, 5H), 5.12 (s, 2H), 3.95-3.92 (m, 2H), 3.42-3.36 (m, 2H), 2.30 (d, J = 7.2 Hz, 2H), 2.09-1.99 (m, 1H) 1.64-1.61 (m, 2H), 1.39-1.29 (m, 2H); MS (ESI): m/z 234 (M+)., 103260-44-2

As the paragraph descriping shows that 103260-44-2 is playing an increasingly important role.

Reference£º
Patent; Meiji Seika Pharma Co., Ltd.; MORINAKA, Akihiro; MAEBASHI, Kazunori; IDA, Takashi; HIKIDA, Muneo; YAMADA, Mototsugu; ABE, Takao; EP2737900; (2014); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

New learning discoveries about 103260-44-2

103260-44-2, 103260-44-2 Ethyl 2-(tetrahydro-2H-pyran-4-yl)acetate 2773412, aTetrahydropyrans compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.103260-44-2,Ethyl 2-(tetrahydro-2H-pyran-4-yl)acetate,as a common compound, the synthetic route is as follows.

The product of Preparative Example 11 (3.04) g, 17.7 mmol) was dissoloved in 90 mL of ethanol containing 3 g (53 mmol) of potassium hydroxide. This was stirred for 18 hours and then concentrated under vacuum. The residue was dissolved in 15 mL of water, adjusted to pH 2 with 12 N HCl, and extracted with three 50 mL portions of dichloromethane. The combined organic layers were dried over magnesium sulfate and concentrated under vacuum giving 2.04 g of the product as a white solid, mp = 60-63C.

103260-44-2, 103260-44-2 Ethyl 2-(tetrahydro-2H-pyran-4-yl)acetate 2773412, aTetrahydropyrans compound, is more and more widely used in various.

Reference£º
Patent; SCHERING CORPORATION; EP1019398; (2004); B1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Brief introduction of 103260-44-2

As the paragraph descriping shows that 103260-44-2 is playing an increasingly important role.

103260-44-2, Ethyl 2-(tetrahydro-2H-pyran-4-yl)acetate is a Tetrahydropyrans compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a suspension of lithium aluminium hydride (11 g, 0.29 mol) in dry tetrahydrofuran (350 mL) at 0 C. was added a solution of (tetrahydro-pyran-4-yl)-acetic acid ethyl ester (25 g, 0.145 mol) in dry tetrahydrofuran (100 mL) dropwise. The resulting mixture was then refluxed for 16 h. After cooling to 0 C., the reaction mixture was quenched carefully by slow addition of a saturated sodium carbonate solution (50 mL). The mixture was decanted and the precipitate was washed with tetrahydrofuran (2¡Á200 mL). The combined tetrahydrofuran layers were dried over anhydrous sodium sulfate and then concentrated in vacuo to afford 2-(tetrahydro-pyran-4-yl)-ethanol (13 g, 69%) as a yellow oil which was used in the next step without purification.

As the paragraph descriping shows that 103260-44-2 is playing an increasingly important role.

Reference£º
Patent; Berthel, Steven Joseph; Chen, Li; Corbett, Wendy Lea; Feng, LiChun; Haynes, Nancy-Ellen; Kester, Robert Francis; So, Sung-Sau; Tilley, Jefferson Wright; US2011/144105; (2011); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Analyzing the synthesis route of 103260-44-2

As the paragraph descriping shows that 103260-44-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.103260-44-2,Ethyl 2-(tetrahydro-2H-pyran-4-yl)acetate,as a common compound, the synthetic route is as follows.

To a mixture of ethyl 2-(tetrahydro-2H-pyran-4-yl)acetate(20 g, 116 mmol) in anhydrous THF (300 mE) was addedlithium aluminum hydride (8.8 g, 232 mmol) portionwise at0 C. The mixture was stirred at 11-13 C. for 18 h. TEC(petroleum ether: ethyl acetate=3: 1) showed no startingmaterial remaining. The mixture was quenched with water(9 mE), 10% aq. NaOH solution (9 mE) and water (18 mE)successively at 0 C., filtered and concentrated underreduced pressure to give crude 2-(tetrahydro-2H-pyran-4-yl)ethanol (11.7 g, 77%) as an oil, which was used for thenext step directly without further purification. ?H NMR(CDC13, 400 MHz): oe 3.86-3.90 (m, 2H), 3.58-3.61 (t, J=6.4Hz, 2H), 3.32-3.35 (t, J=11.6 Hz, 2H), 2.69-2.70 (m, 1H),1.61-1.63 (m, 3H), 1.54-1.60 (m, 2H), 1.43-1.45 (m, 2H).

As the paragraph descriping shows that 103260-44-2 is playing an increasingly important role.

Reference£º
Patent; Vitae Pharmaceuticals, Inc.; Claremon, David A.; Yuan, Jing; Zhao, Wei; Zheng, Yajun; (54 pag.)US9481674; (2016); B1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics

Analyzing the synthesis route of 103260-44-2

The synthetic route of 103260-44-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.103260-44-2,Ethyl 2-(tetrahydro-2H-pyran-4-yl)acetate,as a common compound, the synthetic route is as follows.

Lithium aluminum hydride (2M solution in THF, 40.66 ml, 81.3 mmol) was cooled at 0 C and a solution of ethyl 2-(tetrahydro-2H-pyran-4-yl)acetate (14.0 g, 81.3 mmol) in THF (70 ml) was added dropwise. Ethyl acetate (20 ml) was added to the reaction mixture dropwise at 0 C and the resulting mixture was allowed to stir for 16 h. The reaction mixture was filtered through Celite and the filtrate was concentrated to give crude compound. The crude material was purified by column chromatography using mobile phase 0-65% ethyl acetate in hexane to afford the title compound (66.1%). ?H NMR (400MHz, CDC13) & 5.71 (s, 1H), 4.18-4.15 (m, 2H), 3.81-3.75 (m, 4H), 3.05-3.02 (m, 2H), 2.37-2.34 (m, 2H), 1.32- 1.31 (m, 3H).

The synthetic route of 103260-44-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; EPIZYME, INC.; CHESWORTH, Richard; MITCHELL, Lorna, Helen; CAMPBELL, John, Emmerson; REITER, Lawrence, Alan; SWINGER, Kerren, Kalai; (387 pag.)WO2016/44626; (2016); A1;,
Tetrahydropyran – Wikipedia
Tetrahydropyran – an overview | ScienceDirect Topics